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An attempt is made to establish the relation between the initial concentration distribution of an impurity in a slug and the 
asymptotic behaviour of this distribution under the assumption that the impurity is transported by uniform seepage (rectilinear- 
parallel or plane-parallel) in a homogeneous porous medium where sorption and chemical reaction occur. The carrying liquid 
is assumed to be homogeneous and incompressible and the effect of the impurity on the flow is ignored (a passive impurity). 
Problems with localized initial conditions, their qualitative properties and self-similar asymptotic forms are studied. The principal 
step in the evolution of a thin slug of a reacting impurity turns out to be quite simple: a concentration distribution is close in 
form to the corresponding distribution in the problem without reaction but with a variable amplitude; the evolution dynamics 
of the amplitude and the pulse width are rather well predicted by the method of integral relations. The possibility of using the 
solutions obtained and of the approaches developed to analyse the effect of the absorption of the active impurity during the 
reaction on the effectiveness of increasing the yield of petroleum by the injection of thin slugs of an active impurity is discussed. 
0 1999 Elsevier Science Ltd. All rights reserved. 

The problem of a thin slug, that is, the propagation and evolution of a batch of impurity, initially localized 
in a narrow domain, has at least two important applications: ecological (the spreading of local 
contamination of ground waters) and petroleum production (the use of thin slugs of reagents to improve 
the yield of petroleum) [l-4]. The available theoretical results relate to the purely diffusive evolution 
of a slug [3,5] and to the effect of the sorption irreversibility [6-91. 

In this paper, which is a direct development of these investigations, particular attention is paid to 
the effect of a reaction which leads to the absorption of the impurity on the evolution of the slug. 

1. FORMULATION OF THE PROBLEM 

Consider the transport of a neutral impurity by the flow of an incompressible fluid in a porous medium 
when there is adsorption, which is subsequently assumed to be linear and at equilibrium, and an nth 
order chemical reaction. Rectilinear-parallel and plane-radial flows are investigated (cases 1 and 2, 
respectively). Here, the concentration distribution of the impurity is governed by the diffusion equation 
with convection and reaction, which, for the two cases mentioned above, has the form 

a(m+r)c+uac a2c 
at 

~=Da,2-(rc” (case 1) 

ma(m+r)c+S-dc=~~d~aC-~n (case 2) 
at 2nr ar r ar at- 

(1.1) 

(1.2) 

Here, 171 is the porosity of the medium, D is the diffusion coefficient for the impurity, U is the seepage 
rate, Q is the seepage rate per unit thickness of the stratum, c1 is the reaction rate constant, II is the 
order of the reaction and F is Henry’s constant for adsorption. All these quantities are assumed to be 
positive constants. 

In this case, the amount of the impurity that is sorbed per unit volume is 

a = rc 

We consider the initial-value problem with initial distribution of the form 

c(x, 0) = Co(x) 2 0, Ix\5 E, c(x, 0) = 0, Ix/> E (case 1) 

(1.3) 

(1.4) 
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c(r ,O)=Co(r )>O,  O<-r<8,  c(r,O)=O, r>l~ (case 2) (1.5) 

where e is the initial size of the slug, which is assumed to be small in a certain sense (see below). 
The boundary conditions are that a solution is sought which decays at infinity and (in the radial case) 

there is no inflow of the impurity from a source at the origin of the system of coordinates 

~C 
r = 0 : - 2nDr-z-- + Qc = 0 

dr 
(1.6) 

It is well known that, by changing to a moving system of coordinates, the problem for rectilinear- 
parallel flow with a linear sorption isotherm can be reduced to a diffusion equation with reaction, but 
without convection, which formally corresponds to m = 1, U = 0 and F = 0. 

The simplest prototype of the formulation of the problem is obtained if one considers the usual 
diffusion equation with initial data of the form (1.4). We then have the expression 

. M0 ( x 2 d 
c ( x , t ) = ~ e x p ~ - - ~ t J ,  t > > - ~ ;  M0= Co(x)dx (1.7) 

for the asymptotic form of the concentration distribution in a pulse in terms of a single integral 
characteristic of the initial distribution, that is, of the total initial amount of the impurity M0. 

The aim of this paper is to seek an analogue of relation (1.7) for the non-linear problem. It is well 
known that the result cannot be so simple and general and cannot be expressed in terms of just a single 
initial amount because the amount of impurity is not conserved when there is a chemical reaction and 
its rate of decrease depends on the form of the initial distribution. 

2. T H E  S E L F - S I M I L A R  S O L U T I O N .  L I N E A R  F L O W  

We will consider the diffusion equation with a reaction 

0c D ~2C n 
3--T = Ox---- T - ctc (z > 0 (2.1) 

and we shall analyse the evolution of an initial perturbation 

c(x, O) = F(x) > O, lxl < E; c(x, 0) = 0, [xl > e (2.2) 

which is localized in a small domain Ix I ~< e. 
It is natural to expect that it will asymptotically generate a self-similar asymptotic form after long 

periods of time. 
In the unbounded domain, oo < x < oo, Eq. (2.1) admits of self-similar solutions of the form 

x 1 (2.3) c = S t  -~ f ( { ) ,  ~ = -~-- -~ ,  T = n----~ 

We also choose B " - l a  = 1. Then, the required solution must satisfy the boundary-value problem 

f "  + 2~f" - 4 f "  + 4 f f  = O, 0 < ~ < .o; f ' (O)  = 0, f(,o) = 0 (2.4) 

It is clear that, in the case of the chosen (positive) initial data, the solution must be non-negative 
and clearly cannot have a maximum exceeding the critical value f*(n) = (n - 1) ~. Actually, at the point 
of the maximum f '  = 0, f "  < 0 and, according to (2.4), f < f*. Hence, the required solutions can begin 
at points of the interval x = 0, 0 ~< f(0) ~< f * ( n )  withf ' (0)  = 0 and are easily calculated numerically as 
solutions of the corresponding Cauchy problem. Typical results for n = 1.5, 2 and 3 are shown in 
Fig. 1 for various values of the amplitude parameter A = f(0). 

These results deserve some specific commentary. First, solutions of the required form, that is, positive 
solutions, which have a maximum atx = 0 and tend to zero at infinity exist for a certain range of values 
of the amplitude parameterA. 

Moreover, the existence of a self-similar solution, generally speaking, does not mean that it will express 
the required asymptotic form. On the contrary, when n I> 3, the opposite is directly proved: when n/> 3, 
the required asymptotic forms are clearly not expressed by the self-similar solution of (2.3) and (2.4). 
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This manifests itself in a particularly distinct manner when n = 3. Actually, the total amount of the substance 
is expressed by the integral 

M(t) = IS.. 

and, according to the physical meaning of the problem, it must decrease (which is easily shown by integrating Eq. 
(2.1) over the whole of  the x axis). 

In the case of a self-similar solution of the form (2.3), we have 

and this expression does not decrease if -y  + 1/2 I> 0 or n ~> 3. In particular, when n = 3, "the supply of the 
substance", which corresponds to the self-similar solution, must remain constant. (The discussion relating to the 
analysis of the total supply is due to G. I. Barenblatt.) 
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This situation, that appears to be paradoxical at a first glance, is resolved by a more profound analysis 
of the self-similar solutions of problem (2.4). As previously, we shall assume that n > 1. Then, the 
asymptotic form of the solutions which decay at infinity is close to the solutions of the linear equation 

tp'" + 2 ~tp" + 47tp = 0 

The two linearly independent solutions of Eq. (2.5) behave as 

qh = exp(--~2), ~02 = ~-2~t 

(2.5) 

(2.6) 

When n > 3, an infinite supply of the substance corresponds to all solutions of problem (2.4), which 
contain a slowly decaying contribution ~P2 in the asymptotic form. 

These solutions can only serve as the asymptotic forms of solutions of problems with an initial infinite 
supply of the impurity and non-localized initial data. Solutions of problem (2.4), which decay 
exponentially at infinity, change sign and cannot serve as the asymptotic form of the solutions of problems 
with positive initial data. 

When 1 < n < 3, both solutions (2.6) of the linearized equation (2.5) are integrable at infinity and 
there is no paradox associated with an infinite supply. Nevertheless, also in this case, solutions with 
exponential asymptotic forms at infinity cannot serve as a self-similar asymptotic form of problems with 
localized (finite) initial data. This intuitive discussion is supported by rigorous "a priori" estimates (see 
Section 3). 

Hence, only those positive solutions of (2.4) can serve as possible self-similar asymptotic forms that 
decay more rapidly than any power of ~ as ~ ---) oo. 

This condition enables one to isolate from the single-parameter family of solutions of problem (2.4) 
the single solution that can serve as a "candidate" for the role of self-similar asymptotic form which is, 

2/(n 1~ in fact, the positive solution which decays as ~ --) ~o more rapidly than ~- - . 
In fact, the question refers to the determination of the minimum value of the amplitude parameter 

A = f(0) for which the solution still remains positive when 0 ~< ~ < co. This value is easily found 
numerically. It depends on n and is a unique eigenvalue of the problem. The corresponding solutions are 
represented by the dashed line in Fig. 1. The arguments presented above enable one to hope that the 
self-similar solution that has been chosen in this manner is the asymptotic form of the solution in the case 
of a localized initial distribution. This supposition is well supported by the results of a numerical experiment. 

Comparison of the normalized results of a calculation of the concentrations c(x, t)/c(O, t) as a function 
of the self-similar coordinate ~ = x/(2"~(Dt)) and the normalized self-similar solutionfn(~)/A(n) shows 
that these solutions are the same to within a few percent over the whole range of ~ values. (The numerical 
solution was obtained for the initial concentration profile n the form of a narrow rectangle of unit height.) 
Hence, when n < 3, the asymptotic behaviour of the concentration distribution is characterized by the 
relation 

c (x , t ) -  Bt f ,  t > > - -  
' 4D 

where B is the functional of the initial distribution Co(x). 
In the case of standard initial distributions, the form of this functional can be established from 

dimensional considerations. In fact, say, for a rectangular initial distribution: Co(x) = Co, Ix [ < l, 
Co(x) = O, [x [ > 1, the coefficient B can be a function of Co, I, D and c~. 

Hence 

z=c0(12 /D) 
It follows that initial distributions with the same initial value of the moment  M* = Co/2v lead to the 

same asymptotic profiles. This conclusion is confirmed by data from a numerical experiment for certain 
values of the reaction rate c~, initial concentration C o and initial pulse width I but the same value of the 
dimensionless parameter  Z = Col2ct/D. The results are practically identical and are in good agreement 
with the self-similar distribution. 

We emphasize that, as would be expected, the narrower the initial pulse, the greater the initial supply 
of the impurity which is necessary to obtain one and the same asymptotic behaviour and, as l --) 0, this 
supply tends to infinity. 

Actually, this means that, in the case of narrow pulses, the greater part of the supply is consumed in 
the reaction at the initial stage of the evolution. 
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Hence, in view of the fact that there is no invariant of the motion in the case of this problem, the 
self-similar asymptotic form retains a certain non-trivial "memory" about the form, amplitude and width 
of the initial pulse, a situation which is typical for the self-similarity of the second kind [10]. 

3. "A P R I O R I "  E S T I M A T E S  

We will now consider the bounded solution c(x, t) of problem (2.1) and (2.2). Suppose x*(t) is the 
position of the global maximum of the solution at the instant of time t 

It is obvious that 

c(x, t) < c(x*(t), t) =- c.(t) (3.1) 

Hence 

dc d 2  c I • 
O<c, ; -~-Ix=x.=O,  ~ - x = x  <0 (3.2) 

clc,(t) el% 
dt - D - - ~  Ix=x, -o~c n < -~cn, 

(3.3) 

c,(t) <_ [ct-"(0)+ (n - 1)at] -7 = ~,(t) 

The first inequality of (3.3) expresses the obvious fact that a decrease in the maximum concentration 
occurs not only due to reaction at the given point but also due to the fact that the substance flows away 
from the neighbourhood of the maximum into a region with a lower concentration. It is noteworthy 
that, when n > 1, the asymptotic behaviour of ~.(t) is independent of c.(0) and is given by the limit 
dependence 

c°(t) = [ (n-  1)at]-'t (3.4) 

The upper estimate ~.(t) is found to be below the limit estimate. 
It is easily proved [11, 12] that the solution depends monotonically on the reaction rate and the initial 

data and is majorized by the solution of the problem without reaction. In particular, it follows that the 
solution of a problem with finite initial data decays more rapidly at infinity than any power of a 
coordinate, which is important when choosing the self-similar solution. 

We consider a linear equation with a variable reaction coefficient 

P-~C = D ~)2~ _ ac,n~-I (t) ~, %,(t) = maxx Co (x, t) 
~t 0x 2 (3.5) 

Here c0(x, t) is the solution of the diffusion equation without reaction with the same initial conditions. 
Equation (3.5) has the solution 

t n - I  • t ~(x,t)= R(t)Co(X,t ), R(t)=exp(-Ot~oC m (t )dt ) (3.6) 

that gives a lower estimate in the case of the required solution of the diffusion problem without reaction 
for the same initial data. 

Hence, the solution of the non-linear problem turns out to be bounded on two sides by the two 
solutions of the linear problems 

Co(X, t) > c(x, t) > R(t)Co(X, t) 

It is essential that in the case of finite initial data 

(3.7) 

_1 
c, ,( t)--Mo(nDt) ~; when t---)~ (3.8) 

Hence, when n > 3, the factor R(t) tends to a finite limit as t ~ oo. In particular, when n > 3, the 
total supply of the impurity in the slug remains bounded as t ---) co 

Mo(t ) > M(t) = S_~ c(x,t)dx > R(oo)Mo(t ) (3.9) 
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It can be postulated that the solution of the non-linear problem tends asymptotically to the solution 
of the linear problem with a smaller total supply. This assumption is reinforced by the results of a 
numerical experiment and the approximate solution of the problem by the method of integral relations 
(see below). 

All the preceding discussions can be repeated with minimum modifications for radially symmetric 
flow with convection. The only important difference is the fact that, in the asymptotic form (3.7), the 
power exponent is replaced by -1. The value n = 2, therefore, turns out to be critical. When n > 2, the 
supply of impurity decreases and tends to a finite limit, and it is therefore natural to suppose that the 
asymptotic form of the solution will be the same as the asymptotic form of the solution of the linear 
problem. It once again turns out that this conclusion is in good agreement with numerical experiment. 

Remark. Some results in Sections 2 and 3 are included among the more general results in [11, 12]. 

4. R E C T I L I N E A R - P A R A L L E L  FLOW. 
THE M E T H O D  OF I N T E G R A L  R E L A T I O N S  

It is clear from the analysis of the results of the numerical experiment and the asymptotic investigation 
that the solution being investigated is close to a standard Gaussian curve of variable amplitude 
and width. It therefore makes sense to seek an approximate solution of problem (1.1)-(1.4) in the 
form 

c(x, t) = B(t) exp(-x2//2) (4.1) 

where B(t) and l(t) are unknown functions of time. We will use the method of integral relations (see 
[1, 2], for example). On multiplying both sides of Eq. (2.1) by Ck, integrating from --~ to ~* and taking 
account of the condition at infinity, we obtain the integral relations 

f~c ~ aCax = I d 1Lck+tax = 
at k 

:Cdx =iS.c* ax = -~fS'c*+"ax ~ ~x : 

(4.2) 

for finding the parameters B and I. It is essential that when choosing the approximation in the form of 
(4.1), the integrals (4.2) are expressed in an explicit form in terms orB and l. Using the first two integral 
relations (k = 0, 1) and putting BI = X, we have 

dX =--~nn XB"-I' dB_ 2B 3 , , ( I  2-v~" "~ 
-~t X -T '+aB ~ n  ~n--+-T) (4.3) 

Eliminating t from system (4.3), we obtain the equation for the trajectories in the phase plane of the 
variables B and X 

dB 2~l-nB 4-" B (  2 2f-~- 1 (4.4) 

The solutions of interest have an amplitude that decreases with time. In the case of a small B and 
finite X, the behaviour of the solutions of Eq. (4.4) is different when n < 3 and n > 3. If n < 3, the 
second term on the fight-hand side is the leading term and we, therefore have X ~ 0 as B --* 0. 

Thus, in the case of asymptotically decaying solutions, both the parameters, B and X, tend to zero 
and the leading term on the fight-hand side of (4.4) turns out to be the first term. Hence 

n4-n dB~ 2-q~.---~, X ~ [-f~'(n-3)]/~B (3-")12 
dX (4.5) 

The first equation of (4.3) then gives 

t_B l-n, I=X/B_BO-n)/2-t ~ (4.6) 

which agrees with the behaviour expected from the analysis of the self-similar solution. 
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When n > 3, the traiectories tend to finite points on the X axis as B ~ 0. In this case, it follows 
from (4.3) that B ~ t - l /z ,  l - t 1/2. This corresponds to the asymptotic form of the solutions of the linear 
problem. In the boundary case n = 3, Eq. (4.5) becomes linear and is easily integrated 

inB=const-  4~ 1 T X - 'T  + (4-6 - 1)in X (4.7) 

After this, the problem is completely solved in quadratures. On substituting expression (4.7) into the 
first equation of (4.3) and integrating, we have 

B = const X C 64~-~-1) exp - 

t = tx(const)2 x 

(4.8) 
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Fig. 2. 



272 V.M. Entov 

The latter expression tends extremely rapidly to infinity, this signifies a very slow decay of the 
parameter X with time, which is proportional to the total supply of the substance in the slug, and in 
this case 

X - [2-,,/-3/(ct In t)] ½ 

On the other hand, by comparing expressions (4.8), we find that B4t  - X .  It follows that the 
characteristic width of the slug l = X / B  behaves asymptotically in accordance with the usual square 
root law (1 - ~Jt) and the amplitude decays somewhat more rapidly according to the square root 
law 

B ~ X / ~ = [ 2 q 3 / ( ~  In t)] ½ 

Figure 2 illustrates the behaviour of the specific parameters of the slug: the total supply X = Bl  (the 
dashed curves) and the amplitude B (the solid curves) in the subcritical case (n = 2), the supercritical 
case (n = 4) and the boundary case (n = 3) when tx = 10 3, X(0) = 1 and for various initial values of the 
amplitude B0 equal to 10 (curve 1), 1 (curve 2) and 10 -1 (curve 3). The approximate solutionX(t), ob- 
tained by the method of integral relations (MIR) .for n = 3 (the solid curve), is compared with the solution 
found from the numerical experiment (the dashed curve). Since the initial distribution (a rectangle) in 
the numerical calculation was extremely far from that postulated in the MIR, the initial values of B 
and I in the comparison were taken to be such that the same values of the first and second moments 
were obtained as in the initial distribution. MIR provides a reasonable approximation to the solution 
over the whole range of observations. It even reproduces the rather unusual dynamics of the total supply 
in the boundary case when n = 3. 

The distributions obtained numerically, predicted by MIR and those corresponding to the self-similar 
solution, were also compared. They are found to be extremely close to one another, that justifies the 
choice of the form of the solution in the MIR. 

This all favours the use of MIR for practical estimates. 

5. RADIAL FLOW 

The  linear case. In the linear case (n = 1), on making the substitution c = c(r,  t)e -~t, the transport 
equation is reduced to the diffusion equation without absorption. The solution of this equation, 
corresponding to initial data that are localized close to the point r = 0, and to zero boundary conditions 
when r = 0 and r = oo, has the form 

= M_ f(TI), TI = r 
t 24-67 

f " +  2rl+(1-q)  f ' + 4 f = O ;  q=2~----D 

O.5 

O.g 

O.7 

0.05 
10-~ lO-J 10 -1 t; 

Fig. 3. 
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The solution of the equation for the functionf(rl) which decays more rapidly than r1-2 as n -4 oo (which 
is necessary for the convergence of the integral of rlf(rl ), that is proportional to the total supply of the 
impurity in the slug) has the form [13] 

lFr(l +qll-' f = clnq exp(-n2)drl, G=~L k 2 )J 
The constant C1 is found from the normalization condition 

2 ~  rlf(rl)dn = 1 
0 

This solution illustrates the important properties of the evolution of a slug close to a source ("a pore") 
when there is convection. Close to the source (r = 0), the concentration variation is given by a power 
law with an exponent which depends on the P6clet number of the problem (the dimensionless parameter 
q), that specifies the ratio of the convective and diffusive fluxes. 

The concentration vanishes at the source itself, and the slug is an annular domain which is narrower, 
the greater the Pdclet number q. All of these properties are also conserved in the non-linear case, which 
is considered below. 

The non-linear case--the self-similarsolution. In the non-linear case formulated in Section 1, for radial 
flow the problem has a self-similar solution of the form 

1 r 
C = Bt -Yf (n) ,  7 -  n -  1' n - 2,fD~ (5.1) 

where f i s  the solution of the boundary-value problem 

f " + I 2 r l + ( 4 - q ) ~ l f ' + 4 " f f - 4 f "  =0, f (O)= f(~o)=O (5.2) 

In accordance with its physical meaning, the required solution must be positive and therefore has a 
positive maximum. It is well known that there is no such solution when n < 1. When n > 1, as the direct 
numerical solution of problem (5.2) shows, the self-similar solution has the required form in a certain 
range of the parameter values 

A = lim (rlqf('q)) 
~1~0 

The corresponding "total supply" of the impurity 

8 gD A '7. 
M = J 27zrc(r, t ) d r :  ~ J rlf(rl)dl ] (5.3) 

0 0 

does not decay when n I> 2. The self-similar solution therefore cannot be the asymptotic form of the 
solution with localized initial data when n 1> 2. 

On the whole, the situation is entirely equivalent to the case of a rectilinear-parallel flow with the 
sole difference that the range of values of the exponent n in which the asymptotic form can be self- 
similar is narrowed down to the range 1 < n < 2. In this range, the unique solution is singled out by 
the fact that it decays like exp(-rl z) as rl ~ oo since the "total supply" is only bounded for such a solution. 
A comparison of the self-similar solutions with the asymptotic form of the numerical solution confirms 
that the self-similar solution actually describes the asymptotic form of the evolution of the concentration 
in the slug in this range of values of the parameter n. 

Again, it is easy to prove the bilateral estimate 

g(r, t)<~ c(r, t)<~ c0(r, t) 

where co(r, t) is the solution of the corresponding linear problem without absorption (a =- 0) and E is 
the solution of the linearized problem 

~? Q 3 ~ _ D  1 3 : ~?)  ,,_~.._ 
2, r r co r, 
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~(0, t)=F(**, t )=0;  ~(r, 0)=(P0(r), r<~E; E(r, 0 )=0 ,  r > E  

E(r, t)=co(r, t)R(t) 

When n > 2, the factor R(t), which is determined by relation (3.6), tends to a finite limit as t --4 o. 
such that the total supply of the impurity tends to a finite limit as t ---> oo. 

Approximate solution by the method of  integral relations. Multiplying Eq. (1.2) by 2m~(r ,  t) and inte- 
grating from 0 to ~*, we obtain 

1 d 

k + l  dt 
~c 

M,+I +Q~ c~ ~rdr =~2ffdgc ~ ~ ~c o o O"~r~"~dr-itMk+" 

M~ = 2 ~  rC k (r, t)dr 
0 

Hence, we have a system of integral relations 

dMl =-itM. 
dt 

I dMk+l =-2~Dk~ k-l(~C~2 
k + l  dt o c r[~r~ dr-i tM'+"'  k > 0  

In the case of this approximation, the moments Mk are explicitly calculated and expressed in terms 
of F-function [14]. As a result, the system of equations for findingA(t) and l(t), which uses the first two 
integral relations, is reduced in the variables A(t),  X(t)  = Al  2 to the form 

dX / dt =-ff411XA "-'t, X = AI 2 

dA = _ 4 DA___~ 2 + it(ill _ l-t2)A n 
dt X 

F(nq / 2) 1 2 q+l F((n + l)q / 2) 
Ill = nnq/2 F ( q / 2 ) '  Il2 = ( ) ( )'n+l'(n+l)q/2F'q" 

(5.4) 

Here, again, the magnitude of X is proportional to the total supply of material in the slug and the 
magnitude of A is proportional to the "amplitude" of the concentration pulse. 

In the (X, A)  plane, we have the equation 

dA 419 A a-~ 
= It4 x, X2 I- II211t- 111 xA (5.5) 

As in the case of rectilinear flow, cases when n < 2, when all the trajectories pass through the origin 
of coordinates and cases when n > 2. when all the solutions tend to points on the X axis, that is, the 
slug spreads asymptotically, conserving a finite supply of the substance, are qualitatively different. In 
the boundary case when n = 2, Eq. (5.5) turns out  to be linear and the problem is solved in quadratures 

_ A ( X ~ t - l e x p (  4DII I 
A- O:o: 

I i ° dX Id I l  2 
t ~ ~ 

o~t XA(X)' Ill 

(5.6) 

c(r, t) = A(t) exp - ' q = 2"-'~ 

We will use the simplest approximation of the required solution, which agrees both with the linear 
solution and with the data of the numerical experiment 
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Again, the second relation of (5.6) is indicative of the extremely slow decay of the total supply with 
time. 

The approximate solution, obtained by the method of integral relations (the dashed curves) and the 
results of the numerical calculation (the solid curves) are shown in Fig. 4 in the critical case (n = 2) 
for q = 6, tx = 100 and t = 1, 10 and 100, respectively, for curves 1, 2 and 3 where the values of c(r, t) 
are reduced by a factor of 10 in the case of curves 1 and increased by a factor of 10 in the case of curves 
3. A comparison shows good agreement between the approximate, analytical and numerical results. 

6. DISPLACEMENT OF A THIN SLUG OF ACTIVE IMPURITY 
In estimating the influence of the evolution of the impurity distribution on the process of the petroleum 

displacement by a solution of an "active impurity", that is, a solution of a substance which is used to 
increase the petroleum yield (see [1-3, for example]), three simplifying assumptions are made below: 
(1) the inverse effect of the two-phase nature of the flow is not taken into account, so that the 
concentration distribution of the impurity is the same as in a single-phase flow (this assumption is 
acceptable if the solubility of the impurity in the aqueous and petroleum phases is the same), (2) 
convective transport of the impurity predominates over diffusive transport and therefore the slug size 
is small compared with the specific size of the stratum (a "narrow slug"), and (3) capillary transport 
can be neglected. 

With these assumptions, the investigation of the displacement reduces to solving the problem [1-3] 

~s OF(s, c) = 0 

m-~- +v ~x (6.1) 

s(x, O) = So, s(O, t) = s d, c = c(x, t) 

Here s is the water saturation, U is the displacement rate, m is the porosity of the stratum and F is a 
function of the flux distribution (the Bucldey-Leverett function) which depends on the concentration 
of the active impurity as on the parameter. The distribution c(x, t) is assumed to be known (from the 
solution of the problem considered above, say) and to be concentrated close to the known trajectory 
of the slug inx - Xo(t). Everywhere outisde of the narrow boundary layer close to the trajectory of the 
slug, the saturation distribution is governed by the Bucldey-Leverett equation (Eq. (6.1) with Fo(s) = 
F(s, 0)). 

The thinness of the slug enables us to use the procedure of matched asymptotic expansions as was 
done previously with reference to similar problems [3, 5]. On introducing the inner coordinate ~ = x 
-X0 in the boundary layer, we find that the saturation distribution in the transition zone satisfies the 
relation 

UF(s, c)- mVs = C, V = X~(t) (6.2) 
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at each  instant  of  t ime, where  C and V a r e  slowly varying functions of t .  Rela t ion  (6.2) defines a straight 
line in the (s, F ) -d i ag ram (Fig. 5), the points  of  intersect ion of  which with the graph  Fo(s), M ÷ and M -  
co r re spond  to states behind the slug and in front  of  it at a given instant.  T h e  s lope of  this line is known 
and it is equal  to mI,'/U. However ,  the f ree  t e rm  C(t) remains  unde te rmined .  In  o rde r  to de te rmine  it, 
we no te  that,  at  a fixed t within the t ransi t ion layer, we have a h u m p e d - s h a p e d  concen t ra t ion  profile 
C(x, t). I t  follows f rom (6.2) that  

uOF  c=0 
- m V - ~ -  + ~9"-s" /)~ ~)c 0 k 

However ,  when  ~ = 0, we have Oc/O~ = 0, c = Cmax(t ) such that  V = (U/m)OF(s, Cmax)/Os. This  means  
that,  at  each  instant  t, the line (6.2) in the  (s, F ) -d i ag ram touches  the graph  of  F(s, c) as a funct ion of 
s with c = Cmax(t) (Fig. 5). The  actual values s+(t) and s-(t) of  the saturat ion on both  sides of  the trajectory 
of  the  slug Xo(t)  are  uniquely  def ined by this. 

Af t e r  this the sa tura t ion  dis tr ibut ion s(x, t) is found  by the m e t h o d  of  characteris t ics  and is given by 
the express ions  

+ s>~ s o x(s, t)=Fo'(s) U t ,  s ~ s  o, 
m 

x(s, t) = Fo'(S ) U (t - t ')s ~ (t ') + X o (t') 
m 

( the minus  superscr ip t  is t aken  when  s ,  ~ s-  ~< So and the plus superscr ipt  when  s~ ~< s ~< s~). He re  so. 
is the l imiting value of  the sa tura t ion  in f ront  of  the  decaying slug, which is given by the solution of  the 
equa t ion  V = (U/m)Fo(S**). Hence ,  in the case under  considerat ion,  all the technical characteristics which 
are  of  interest  can be calculated explicitly. 

In  concluding, we note  that  the same approach  can be applied without  any changes to axially symmetr ic  
radial  flow, if one  puts  x = r2/2, where  r is the dis tance f rom the pore .  
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